51Testing软件测试论坛

 找回密码
 (注-册)加入51Testing

QQ登录

只需一步,快速开始

微信登录,快人一步

手机号码,快捷登录

查看: 650|回复: 2
打印 上一主题 下一主题

[python] Python CSV、 JSON 格式高级处理(上)

[复制链接]
  • TA的每日心情
    无聊
    3 天前
  • 签到天数: 1050 天

    连续签到: 1 天

    [LV.10]测试总司令

    跳转到指定楼层
    1#
    发表于 2023-6-8 10:56:35 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    CSV(Comma-Separated Values)和 JSON(JavaScript Object Notation)是两种常见的数据格式,它们在数据交换和存储中都有着广泛的应用。CSV 是一种基于纯文本的表格格式,通常用于表示简单的表格数据;JSON 则是一种轻量级的数据交换格式,用于表示复杂的结构化数据。
      在实际应用中,我们经常需要对 CSV 和 JSON 数据进行高级处理,以获得更有用的信息或更好的数据分析结果。例如,我们可能需要从一个大型的数据集中提取特定的数据,过滤掉不需要的信息,或者将数据转换为其他格式。这些操作需要使用一些高级的技术和工具来完成。
      如何在 Python 中读取和写入 CSV 和 JSON 文件
      在 Python 中,我们可以使用内置的 csv 和 json 模块来读取和写入 CSV 和 JSON 文件。csv 模块提供了一组函数来处理 CSV 格式的数据,如 csv.reader()、csv.writer() 等;json 模块则提供了一组函数来解析和生成 JSON 格式的数据,如 json.loads()、json.dumps() 等。
      下面是一个示例代码,演示如何使用 csv 和 json 模块读取和写入 CSV 和 JSON 文件:
      import csv
      import json
      # 读取 CSV 文件
      with open('data.csv', 'r') as f:
          reader = csv.DictReader(f)
          for row in reader:
              print(row)
      # 写入 CSV 文件
      with open('data.csv', 'w', newline='') as f:
          fieldnames = ['name', 'age']
          writer = csv.DictWriter(f, fieldnames=fieldnames)
          writer.writeheader()
          writer.writerow({'name': 'Alice', 'age': 23})
          writer.writerow({'name': 'Bob', 'age': 30})
      # 读取 JSON 文件
      with open('data.json', 'r') as f:
          data = json.load(f)
          print(data)
      # 写入 JSON 文件
      data = [{'name': 'Alice', 'age': 23}, {'name': 'Bob', 'age': 30}]
      with open('data.json', 'w') as f:
          json.dump(data, f)


      在这个例子中,我们首先使用 csv.DictReader() 函数读取一个名为 data.csv 的 CSV 文件,并将其转换为 Python 字典类型。然后,我们又使用 csv.DictWriter() 函数创建一个新的 CSV 文件,并向其中写入一些数据。接着,我们使用 json.load() 函数读取一个名为 data.json 的 JSON 文件,并将其转换为 Python 对象。最后,我们又使用 json.dump() 函数将 Python 对象写入到一个名为 data.json 的 JSON 文件中。
      常见的数据处理操作(如排序、过滤、分析等)
      除了读取和写入 CSV 和 JSON 文件之外,我们还需要进行一些常见的数据处理操作,如排序、过滤、分析等。在 Python 中,我们可以使用内置的列表和字典类型,以及一些特殊的数据处理工具来完成这些操作。
      排序
      在 Python 中,我们可以使用 sorted() 函数对列表进行排序,或者使用列表类型的 sort() 方法对列表进行就地排序。例如:
      data = [{'name': 'Alice', 'age': 23}, {'name': 'Bob', 'age': 30}]
      # 按年龄升序排序
      sorted_data = sorted(data, key=lambda x: x['age'])
      # 就地按年龄降序排序
      data.sort(key=lambda x: x['age'], reverse=True)


      在这个例子中,我们首先定义了一个包含两个字典元素的列表 data。然后,我们又分别使用 sorted() 函数和 sort() 方法对列表 data 进行排序操作。在这里,我们使用了一个 lambda 函数来指定排序的关键字,也就是每个字典元素中的 'age' 值。
      过滤
      在 Python 中,我们可以使用列表推导式、filter() 函数等方式对列表进行过滤操作。例如:
      data = [{'name': 'Alice', 'age': 23}, {'name': 'Bob', 'age': 30}]
      # 列表推导式实现过滤
      filtered_data = [d for d in data if d['age'] < 30]
      # filter() 函数实现过滤
      filtered_data = list(filter(lambda x: x['age'] < 30, data))


      在这个例子中,我们同样定义了一个包含两个字典元素的列表 data。然后,我们使用列表推导式和 filter() 函数分别对列表 data 进行过滤操作,只保留年龄小于 30 的字典元素。
      分析
      在Python中,我们可以使用 pandas 等数据分析库对 CSV 和 JSON 数据进行更加复杂的分析操作。例如:
      import pandas as pd
      # 读取 CSV 文件并进行分析
      data = pd.read_csv('data.csv')
      # 输出前 5 行数据
      print(data.head())
      # 对年龄字段进行统计分析
      print(data['age'].describe())
      # 读取 JSON 文件并进行分析
      with open('data.json', 'r') as f:
          data = json.load(f)
      # 转换为 pandas DataFrame 格式
      df = pd.DataFrame(data)
      # 输出前 5 行数据
      print(df.head())
      # 对年龄字段进行统计分析
      print(df['age'].describe())


      在这个例子中,我们首先使用 pandas 库中的 read_csv() 函数和 JSON 模块中的 load() 函数分别读取一个名为 data.csv 和 data.json 的文件,并将其转换为 pandas DataFrame 格式。然后,我们又分别对 DataFrame 中的数据进行了一些简单的分析操作,如输出前 5 行数据、对年龄字段进行统计分析等。
      示例代码
      下面是一个完整的示例代码,演示了如何对 CSV 和 JSON 文件进行高级操作:
      import csv
      import json
      import pandas as pd
      # 读取 CSV 文件
      with open('data.csv', 'r') as f:
          reader = csv.DictReader(f)
          for row in reader:
              print(row)
      # 写入 CSV 文件
      with open('data.csv', 'w', newline='') as f:
          fieldnames = ['name', 'age']
          writer = csv.DictWriter(f, fieldnames=fieldnames)
          writer.writeheader()
          writer.writerow({'name': 'Alice', 'age': 23})
          writer.writerow({'name': 'Bob', 'age': 30})
      # 读取 JSON 文件
      with open('data.json', 'r') as f:
          data = json.load(f)
          print(data)
      # 写入 JSON 文件
      data = [{'name': 'Alice', 'age': 23}, {'name': 'Bob', 'age': 30}]
      with open('data.json', 'w') as f:
          json.dump(data, f)
      # 排序
      data = [{'name': 'Alice', 'age': 23}, {'name': 'Bob', 'age': 30}]
      # 按年龄升序排序
      sorted_data = sorted(data, key=lambda x: x['age'])
      # 就地按年龄降序排序
      data.sort(key=lambda x: x['age'], reverse=True)
      # 过滤
      data = [{'name': 'Alice', 'age': 23}, {'name': 'Bob', 'age': 30}]
      # 列表推导式实现过滤
      filtered_data = [d for d in data if d['age'] < 30]
      # filter() 函数实现过滤
      filtered_data = list(filter(lambda x: x['age'] < 30, data))
      # 分析
      # 读取 CSV 文件并进行分析
      data = pd.read_csv('data.csv')
      # 输出前 5 行数据
      print(data.head())
      # 对年龄字段进行统计分析
      print(data['age'].describe())
      # 读取 JSON 文件并进行分析
      with open('data.json', 'r') as f:
          data = json.load(f)
      # 转换为 pandas DataFrame 格式
      df = pd.DataFrame(data)
      # 输出前 5 行数据
      print(df.head())
      # 对年龄字段进行统计分析
      print(df['age'].describe())


      在这个示例代码中,我们首先使用 csv 和 json 模块读取和写入了一个名为 data.csv 和 data.json 的文件。接着,我们又使用 Python 内置的函数和工具对 CSV 和 JSON 数据进行了一些常见的处理操作,如排序、过滤和分析等。最后,我们还使用了 pandas 库对 CSV 和 JSON 数据进行了更加复杂的分析操作。
      数据清洗和转换
      数据清洗和转换的必要性和应用场景
      在实际数据分析中,数据的质量和准确性对最终的结果影响至关重要。因此,在进行数据分析之前,我们需要对原始数据进行一些预处理工作,以确保数据的完整性、一致性和准确性。
      数据清洗和转换是数据预处理过程中最为重要的环节之一。它包括处理缺失值、异常值、重复值等问题,将数据从一种格式转换为另一种格式,或者将数据进行标准化、归一化等操作。
      数据清洗和转换的应用场景非常广泛,比如:
      ·处理来自不同来源、格式不统一的数据
      · 清除无效、冗余或者错误的数据
      · 处理缺失值、异常值、重复值等问题
      · 将数据转换为适合特定分析算法的格式
      · 通过标准化、归一化等操作提高数据的可比性和可解释性
      如何使用 Python 对 CSV 和 JSON 数据进行清洗和转换
      在 Python 中,我们可以使用 pandas 库对 CSV 和 JSON 数据进行清洗和转换。pandas 是一个强大的数据处理和数据分析库,提供了一组丰富的函数和工具,可以方便地进行数据清洗、数据转换、数据分析和数据可视化等操作。
      下面是一个示例代码,演示了如何使用 pandas 对 CSV 和 JSON 数据进行清洗和转换:
      import pandas as pd
      # 读取 CSV 文件并进行清洗和转换
      data = pd.read_csv('data.csv')
      # 处理缺失值
      data.dropna(inplace=True)
      # 处理异常值
      data = data[(data['age'] >= 0) & (data['age'] <= 120)]
      # 处理重复值
      data.drop_duplicates(subset=['name'], inplace=True)
      # 将数据转换为特定格式
      data['age_category'] = pd.cut(data['age'], bins=[0, 18, 30, 50, 100], labels=['child', 'young', 'middle', 'old'])
      # 读取 JSON 文件并进行清洗和转换
      with open('data.json', 'r') as f:
          data = json.load(f)
      # 转换为 pandas DataFrame 格式
      df = pd.DataFrame(data)
      # 处理缺失值
      df.dropna(inplace=True)
      # 处理异常值
      df = df[(df['age'] >= 0) & (df['age'] <= 120)]
      # 处理重复值
      df.drop_duplicates(subset=['name'], inplace=True)
      # 将数据转换为特定格式
      df['age_category'] = pd.cut(df['age'], bins=[0, 18, 30, 50, 100], labels=['child', 'young', 'middle', 'old'])


      在这个示例代码中,我们首先使用 pandas 库中的 read_csv() 函数和 JSON 模块中的 load() 函数读取一个名为 data.csv 和 data.json 的文件,并将其转换为 pandas DataFrame 格式。然后,我们又使用了一些 pandas 中的函数和工具对数据进行了清洗和转换操作,如处理缺失值、异常值、重复值等问题,将数据转换为特定格式等。
      实例代码
      下面是一个完整的示例代码,演示了如何在 Python 中对 CSV 和 JSON 数据进行数据清洗和转换:
      import csv
      import json
      import pandas as pd
      # 读取 CSV 文件并进行清洗和转换
      with open('data.csv', 'r') as f:
          reader = csv.DictReader(f)
          data = [row for row in reader]
      df = pd.DataFrame(data)
      # 处理缺失值
      df.dropna(inplace=True)
      # 处理异常值
      df = df[(df['age'] >= 0) & (df['age'] <= 120)]
      # 处理重复值
      df.drop_duplicates(subset=['name'], inplace=True)
      # 将数据转换为特定格式
      df['age_category'] = pd.cut(df['age'], bins=[0, 18, 30, 50, 100], labels=['child', 'young', 'middle', 'old'])
      # 写入 CSV 文件
      df.to_csv('cleaned_data.csv', index=False)
      # 读取 JSON 文件并进行清洗和转换
      with open('data.json', 'r') as f:
          data = json.load(f)
      df = pd.DataFrame(data)
      # 处理缺失值
      df.dropna(inplace=True)
      # 处理异常值
      df = df[(df['age'] >= 0) & (df['age'] <= 120)]
      # 处理重复值
      df.drop_duplicates(subset=['name'], inplace=True)
      # 将数据转换为特定格式
      df['age_category'] = pd.cut(df['age'], bins=[0, 18, 30, 50, 100], labels=['child', 'young', 'middle', 'old'])
      # 写入 JSON 文件
      with open('cleaned_data.json', 'w') as f:
          json.dump(df.to_dict(orient='records'), f)


      在这个示例代码中,我们首先使用 csv 和 json 模块读取了一个名为 data.csv 和 data.json 的文件,并将其转换为 pandas DataFrame 格式。然后,我们又使用了一些 pandas 中的函数和工具对数据进行了清洗和转换操作,如处理缺失值、异常值、重复值等问题,将数据转换为特定格式等。最后,我们又使用 csv 和 json 模块将清洗后的数据写入到了两个不同的文件中,分别是 cleaned_data.csv 和 cleaned_data.json。

    分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
    收藏收藏
    回复

    使用道具 举报

    本版积分规则

    关闭

    站长推荐上一条 /1 下一条

    小黑屋|手机版|Archiver|51Testing软件测试网 ( 沪ICP备05003035号 关于我们

    GMT+8, 2024-11-24 18:03 , Processed in 0.070841 second(s), 22 queries .

    Powered by Discuz! X3.2

    © 2001-2024 Comsenz Inc.

    快速回复 返回顶部 返回列表