TA的每日心情 | 擦汗 昨天 09:02 |
---|
签到天数: 1046 天 连续签到: 4 天 [LV.10]测试总司令
|
一、如何trouble shooting
刚才提到了性能测试中的一些相应的指标,当我们发现某些指标不正常的时候,我们应该怎样去做呢?
性能测试的指标往往又是相互关联的,当遇到问题时,我们需要从这些指标的结果中去寻找真正的root cause,这也是性能测试最重要的点之一。废话少说,我们直接来看几个例子吧:
1. 内存泄露
内存泄露是性能测试中很常见的一个点,比如下图,很明显能看到有一个内存上升的趋势,这种情况下很可能就有内存泄露的情况。但是也有例外,比如是C#或者Java写的代码,因为内存回收是垃圾回收器自己的行为,不像C语言那样需要手动回收,所以即使内存在一段时间内有上升的趋势,但是只要能回到原点,就不存在内存泄露的现象。
内存泄露很多时候并没有很明显的征兆,有一次客户抱怨服务挂掉了,这个服务之前有好几个月都运行的好好的,怎么说挂就挂呢,然后我们对系统日志做了很详细的分析,发现就是内存泄露惹的祸。每天内存泄露一点点,到第三个月的时候才导致服务崩溃,这在短期的性能测试中就很难发现。
下图是当时我们在做性能测试的时候发现的问题,很明显内存在一段时间内直接从200多MB升到了500多MB,很有可能存在内存泄露的情况。怎样trouble shoooting呢?
我们借助了第三方的工具ANTS,最终有下面的结果,很明显Sting类变成了最大的类,高达211MB,这个是什么原因造成的呢?然后我们在工具上找了String object的调用链,最终发现代码中有一行的判断错误,导致了内存上升。
2. API响应速度慢
这是一个很常见的问题,单单看现象,其实我们并不知道系统是哪里出的问题,有可能是网络慢,有可能是内存出现了瓶颈,也有可能是I/O的问题... 怎样定位呢?
首先我们还是找到相应的apiserver,通过性能测试的报告,我们发现了下面的问题,message queue随着时间的变化增长特别快,这个时候看API server本身的内存和CPU并没有什么问题,那么问题到底处在哪呢?
这个时候其实很容易就联想到是数据库出现了问题,对比两个不同的版本,发现我们对数据库的存储过程有所更改,最终发现是存储过程的更改导致了某个索引失效,最终反映到API就是速度明显变慢。添加索引后问题得到了解决。一般来说,当我们在修改数据库的时候一定要特别小心,很可能一个小的改动就会导致系统性能的急剧下降。
对于性能测试来说,往往我们发现的问题都是表象上的问题,比如页面反应很慢。但这有可能是多种原因导致的,需要去做深入的分析。这也要求我们在做性能测试时去收集足够的信息,以支撑分析,同时借助一些第三方工具,才能真正定位到问题。
二、关于数据库
其实性能测试我前面已经提到了很多,为什么还要把数据库单拿出来说呢?我们来看看数据库服务器的特殊之处:
1. 关于内存
我们在进行服务器的内存的测试的时候,如果是普通的APP server,当我们对内存进行监控时,通常都是有一个metrics, 比如某个APP的service的内存使用量不能超过总量的百分之多少,对于整个sever来说,通常也会有比较多的内存剩余。
而当我们去查看一个数据库server的时候,会发现可用的内存量通常只有10M或者5M(取决于你的配置)...... 而当你把数据库的内存增加一倍,可用的内存通常还是只有10M左右,这是什么原因呢?
其实这与数据库本身的工作原理有关系,数据库中io操作的基本单位为页,当数据库执行一条语句,比如一条查询语句,它会先从物理磁盘中把相应的页加载到内存,然后再进行操作。
因为数据库本身就在不停的读写,所以数据库内存当中会缓存各种各样的数据,为了更快的读写,数据库会有算法去维护这些内存中的数据,以保证尽可能的使得数据都是从内存中获得,而不是从物理内存中得到(内存的访问速度是纳秒级,硬盘是微秒级)。所以一般来说,数据库会基本用光所有的内存。
这就是为什么数据库会吃内存了,这与其工作原理有关系,只要能保证系统能正常运行就可以了,其他的内存都可以用来缓存数据。
2. 关于死锁
死锁通常是指争抢资源不当,让双方因为对方掌握了自己的资源而无限期的等下去。如下图所示:
发生死锁的原因很多,大部分是由于事务之间对资源访问顺序的交替,或者并发修改统一记录导致的,数据库对待死锁有着不同的策略,对于SQL server来说,它会随机杀掉其中的一个,至少保证另外一个事务的正常运行;而对于Oracle来说,它会对两个事务进行一个评估,会杀掉它认为不那么重要的一个。
所以我们在数据层面,需要去监控死锁的发生情况,一般来说,死锁是不可避免的,但是一旦死锁发生频率很多,必定会影响到业务。
我们可以用很多工具去监控死锁,比如SQL Profile。对于死锁的修正也是对于高并发的事务,尽量减少长度;把锁的优先级调整低一些(用低隔离级别);按同一顺序访问对象,尽量避免事务中的用户交互。
3. 关于磁盘
因为对于数据库来说,最重要的就是读写的操作,磁盘对于数据库来说是非常重要的。
现在好多数据库都是直接放在云盘上的,云盘上的磁盘有着自己的结构,但是很多年前,如果是自己的服务器,我们还要考虑到磁盘阵列,来保证磁盘的效率和安全性。
对于磁盘来说,我们通常会从读写方面来衡量,有几个比较通过的指标可以用来衡量数据库磁盘的性能,比如Average Disk queue lenth,数据生命周期等等。
另外值得一提的是数据库的碎片整理。当数据库读写一段时间之后,由于频繁的插入数据,会导致数据并不是按照顺序排列在磁盘上面,这样当我们在查相关数据的时候,磁盘往往要去不同的区域查找数据,导致性能降低,这个时候我们很有必要去运行磁盘的碎片整理,来保证数据库性能。
但是这个job本身就很占磁盘的I/O,所以尽量选择系统不忙的时候进行。
4. 关于索引
相信索引是大家很熟悉的一个话题了,当数据量很小时,不建索引,进行全表扫描的的性能尚可接受。但是数据量大时,必须借助索引。所以索引的适当与否,是性能好坏的关键。
比如执行一条语句:
SELECT UserName, UserID FROM US.UserDetail WHERE UserName = “李四” |
这条语句这样执行与创建的索引有关系,如果没有索引就需要进行全表扫描,这样加载到内存当中的页在数据量很大的情况下就相当多了。如果建立了适当的索引,可能只需要加载几页内存就可以了。
当我们用一些工具比如sql profile跟踪到一些长的查询的时候,我们就需要去看看索引是否建立恰当。这在数据库的优化中也是很重要的一个方面。当然,索引虽然对读的性能有帮助,但是对写的性能却有影响。
我们也需要再适当的时候reindex索引,原因就是如果索引在物理存储上不连续,也会导致性能的下降,这与磁盘的碎片整理是一个道理。
一般来说,如果系统设计合理,最终的瓶颈都会出现在数据库上,而我们在做性能测试时,也需要了解数据库的特殊之处,去更好的做性能测试。
三、关于性能测试的工具
对于市面上的那么多性能测试工具,怎样选择呢?
性能测试的工具实际上有很多,能列出来的比如Jmeter、Loadrunner,Galtling等等,这取决于很多方面:
·需要测试测试服务端的性能?还是前端的性能?或者是mobile端的性能?后端的话可以选择Jmeter、Loadrunner或者Gatling。前端的话可以选择比如Fiddler、httpWatch等,手机端可以选用GT或者APT等。
·项目的成本,很多性能测试的工具是收费的,也有很多是开源的,需要结合具体的项目进行考虑。
·我们也可以自己写脚本来完成性能测试,只要能满足要求项目的要求就可以。但是通常来说使用已有的工具一般会产生比较好的测试报告,除非一些特殊情况,比如某些协议的特殊性,或者很简单的一些场景等,一般来说还是建议使用市面上已有的工具。
·使用工具的同时,尽量保证测试系统和测试的脚本在同一个网络里面,这样测试出来的结果才有意义。
写在最后
总的来说,性能测试其实是一个很复杂的过程。需要结合不同的方面正确分析需求,根据需求设计出合理的测试场景,定义出性能测试的指标,并且在测试中选择合适的工具进行测试,并且结合测试的多项结果进行分析和trouble shooting。
|
|