51Testing软件测试论坛

 找回密码
 (注-册)加入51Testing

QQ登录

只需一步,快速开始

微信登录,快人一步

手机号码,快捷登录

查看: 771|回复: 0
打印 上一主题 下一主题

[原创] 金融行业的应用与安全风险管理都需要大数据技术来支持

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2022-9-5 16:49:52 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 草帽路飞UU 于 2022-9-5 16:51 编辑

       近年来,随着共享经济、供应链金融、消费金融等新模式、新业态的蓬勃兴起,大数据技术应用已经成为金融机构数字能力建设的关键需求之一。现代金融机构必须充分有效运用大数据技术,才能紧跟国家战略发展要求,推进数字化转型工作的顺利实施。


  大数据技术在金融行业应用

  金融行业是大数据应用场景较多的行业,在银行、保险、证券以及互联网金融等金融机构都有具体的应用落地。




1、客户画像

  客户画像又称用户画像或用户角色,是一种勾画目标用户、联系用户诉求与设计方向的有效工具,核心工作就是给客户打标签。大数据时代,网络上充斥着大量客户具体信息,客户画像能从客户具体信息中提炼出标签,将客户群体分类,方便企业为客户提供针对化、人性化的服务。
  在银行业中,客户画像应用主要分为企业客户画像和个人客户画像。企业客户画像包括使用企业的生产、运营、财务、销售和客户数据、相关产业链上下游等数据来画像;个人客户画像包括使用人口统计学特征、风险偏好、消费水平、兴趣爱好等数据来画像。一般来说,银行得到的客户数据并不全面,采集方式也比较单一,可能导致根据已有数据得出错误结论,所以银行需考虑整合外部数据,如互联网公司获取的客户行为数据,为客户提供更加精确的服务。
  在证券行业中,证券公司通过分析客户的账户状态、交易习惯、账户价值、投资偏好以及投资收益,来对客户人群进行分类,分析出最适合客户的服务,改进服务方式,锁住客户资源。比如某些客户投资能力欠缺,风险接受程度低,这时可推荐智能理财业务。



2、精准营销

  精准营销是指在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现低成本高效率市场扩张。简单来说,就是通过分析客户需要什么,投其所好,为其提供个性化的服务。
  在银行业,银行可以在用户画像基础上开展有效的精准营销,包括实时营销、交叉营销、个性化推荐和客户生命周期管理。





       在互联网金融行业,互联网金融企业为降低营销成本,减少对用户的打扰,提高营销转化率,必须利用大数据来实现精准营销。随着互联网时代发展,客户的消费习惯迅速转变,互联网金融企业一般很难接触到客户并推销合适产品,所以需要抓住营销机会,提升客户量,增强客户粘性。
  互联网精准营销的应用目标主要为“获客”、“活客”和“留客”,获客是指寻找目标客户,精准定位营销对象,活客是指为客户提供精准化服务,使用户活络起来,留客则是深度挖掘客户需求,改进服务,增强客户粘性。



      

       在证券行业,证券公司运用大数据技术挖掘客户需求,开展智能投顾业务。智能投顾业务是提供线上的投资顾问服务,通过分析客户的风险偏好、资产规模、交易行为等数据,为客户提供具有优势的个性化投资方案。智能投顾采用自动化智能系统,自主完成客户资料收集分析、投资方案制定、投资方案实施等操作,具有高效智能的特点,能够为更多客户提供定制化服务,为证券公司带来巨大效益。

3、风险管控

  数据和风险是支撑金融企业业务持续发展的两大关键要素,如何依靠数据来量化风险,是金融企业需要深思的问题。在过去的风险管理与决策中,主要以主观经验推断为主,数据支撑为辅,导致企业的风险管理水平不高。现如今金融机构可以利用大数据技术,量化分析业务经营和日常管理中的风险,建立全面风险管理体系,提升核心竞争力。
在银行业中,风险管控方面的应用场景主要体现在贷款风险评估、交易欺诈识别两方面。


       (1)贷款风险评估。对于个人客户,银行可通过分析个人的薪资收入、消费习惯、社交信息等数据,判断贷款风险,确定最高贷款金额。对于企业客户,银行可通过企业的资产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,高效开展企业贷款业务,实现风险与收益的平衡。
  (2)交易欺诈识别。传统的交易欺诈识别都是后知后觉,无法做到实时识别交易欺诈行为,给银行和客户带来了不利影响。利用大数据技术,银行可根据持卡人信息、银行卡信息、历史交易、客户消费习惯等数据,结合智能规则引擎进行实时的交易欺诈识别。
       在保险行业,利用大数据进行风险管理的应用场景主要为预防和识别保险欺诈事件。当前骗保事件时有发生,保险欺诈严重损害了保险公司的利益,而且为了识别可疑保险欺诈案件,保险公司需要花费大量的时间和精力。目前保险公司可利用大数据技术,建立保险欺诈识别模型,识别诈骗规律和疑似诈骗案例,再从这些疑似欺诈案例中开展调查。同时在预防保险欺诈方面,保险企业可以结合客户的其他数据,比如日常消费、医疗信息、出行等数据,分析产生欺诈的可能性,有效预防欺诈事件发生。
  在支付结算行业,盗刷和金融诈骗案件频发,支付结算企业面临巨大压力,如何识别交易诈骗成为难点。大数据可以利用账户基本信息、交易历史、位置信息、日常行为等数据,与智能规则引擎相结合,实现实时交易反欺诈分析。在实时交易反欺诈分析系统中,整个实时技术实现流程为数据采集、特征计算、欺诈分析、风控决策以及事件关闭。





在互联网金融行业,利用大数据进行风险管理的应用场景主要体现在消费信贷方面。互联网消费信贷和传统企业信贷截然不同,更多的是高频率小额贷款,且资金分散无任何抵押,同时客户大部分无人行借贷信用记录,导致拒绝率极高。基于大数据的自动评分模型、自动审批系统和催收系统,互联网金融企业能够用客户行为数据弥补客户信贷数据,对客户的信用进行分析,自动催收账款,降低还贷风险。

4、运营优化

  大数据技术可以帮助金融企业分析行业和市场情况,及时调整运营策略,推出更有竞争力的产品,提升企业的竞争力。
  在银行业,大数据技术可以协助商业银行进行市场优化、产品服务优化和舆情优化。





       在证券行业,证券公司可以利用大数据技术来预测股市行情和股价,及时优化公司运营策略。证券公司对大量个人投资者样本进行跟踪分析,统计其投资收益率、持仓信息、交易信息,建立大数据模型,分析个人投资者交易行为变化情况、对市场看好情况、投资信心以及当前的风险偏好等,以此来预测市场行情的走向。对于股价,证券公司利用大数据技术,综合分析该公司的经营数据、利好利空消息、行业数据、投资者评价信息等,以此来预测短期内的股价波动。

5、供应链金融


  供应链核心企业一般具有资产良好、资金充裕、授信额度高等特点,在供应链上依附于核心企业的上下游企业可能存在需要资金但贷不到款的情况,这时核心企业可以做担保,以物质押,解决上下游企业贷款难题。但对银行来说,信贷风险仍然存在,如何进行风险管控成为难点。利用大数据技术能够促进供应链金融生态发展,加强供应链风险控制,银行可以利用供应链上下游企业的经营数据,以及根据企业间投资、控股、借贷、担保等关系构建的企业关系图谱,以核心企业为中心,判断整个供应链金融风险状态,及时采取风险防范措施。



6、黑产防范

  在互联网金融行业,互联网金融企业为提升竞争力,追求客户服务体验,便简化业务办理手续,对于客户真实身份通常未加以严格验证。这一情况也可以被不法分子利用,主要不法行为为注册虚假信息、利用网络购买身份信息和银行卡进行骗贷取款,已形成一条黑色产业链。大数据技术通过建立模型,分析互联网金融黑产行为特点,对不法行为进行实时监控,可有效打击金融黑产的发展势头。比如大数据对借款手机归属地与真实IP地址不匹配、用户手机长期处于同一位置未移动、设备上相邻两次借款时间间隔极短等行为进行重点监控,及时预警以减少损失。




















本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?(注-册)加入51Testing

x
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏
回复

使用道具 举报

本版积分规则

关闭

站长推荐上一条 /1 下一条

小黑屋|手机版|Archiver|51Testing软件测试网 ( 沪ICP备05003035号 关于我们

GMT+8, 2024-11-18 15:25 , Processed in 0.063508 second(s), 24 queries .

Powered by Discuz! X3.2

© 2001-2024 Comsenz Inc.

快速回复 返回顶部 返回列表