51Testing软件测试论坛

 找回密码
 (注-册)加入51Testing

QQ登录

只需一步,快速开始

微信登录,快人一步

手机号码,快捷登录

查看: 753|回复: 0
打印 上一主题 下一主题

为什么你的接口性能差,实际原因就在这里?

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2022-12-15 16:05:05 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
一、前言



  这篇文章咱们来聊一下,百亿级别的海量数据场景下还要支撑每秒十万级别的高并发查询,这个架构该如何演进和设计?

  咱们先来看看目前系统已经演进到了什么样的架构,大家看看下面的图:



首先回顾一下,整个架构右侧部分演进到的那个程度,其实已经非常的不错了,因为百亿流量,每秒十万级并发写入的场景,使用MQ限流削峰、分布式KV集群给抗住了。


  接着使用了计算与存储分离的架构,各个Slave计算节点会负责提取数据到内存中,基于自研的SQL内存计算引擎完成计算。同时采用了数据动静分离的架构,静态数据全部缓存,动态数据自



动提取,保证了尽可能把网络请求开销降低到最低。

  另外,通过自研的分布式系统架构,包括数据分片和计算任务分布式执行、弹性资源调度、分布式高容错机制、主备自动切换机制,都能保证整套系统的任意按需扩容,高性能、高可用的的运行。


  下一步,咱们来研究研究架构里的左侧部分。


  二、日益膨胀的离线计算结果


  其实大家会注意到,在左侧还有一个MySQL,那个MySQL就是用来承载实时计算结果和离线计算结果放在里面汇总的。

  终端的商家用户就可以随意的查询MySQL里的数据分析结果,支撑自己的决策,他可以看当天的数据分析报告,也可以看历史上任何一段时期内的数据分析报告。


  但是那个MySQL在早期可能还好一些,因为其实存放在这个MySQL里的数据量相对要小一些,毕竟是计算后的一些结果罢了。但是到了中后期,这个MySQL可是也岌岌可危了。


  给大家举一个例子,离线计算链路里,如果每天增量数据是1000万,那么每天计算完以后的结果大概只有50万,每天50万新增数据放入MySQL,其实还是可以接受的。


  但是如果每天增量数据是10亿,那么每天计算完以后的结果大致会是千万级,你可以算他是计算结果有5000万条数据吧,每天5000万增量数据写入左侧的MySQL中,你觉得是啥感觉?


  可以给大家说说系统当时的情况,基本上就是,单台MySQL服务器的磁盘存储空间很快就要接近满掉,而且单表数据量都是几亿、甚至十亿的级别。


  这种量级的单表数据量,你觉得用户查询数据分析报告的时候,体验能好么?基本当时一次查询都是几秒钟的级别。很慢。


  更有甚者,出现过用户一次查询要十秒的级别,甚至几十秒,上分钟的级别。很崩溃,用户体验很差,远远达不到付费产品的级别。


  所以解决了右侧的存储和计算的问题之后,左侧的查询的问题也迫在眉睫。新一轮的重构,势在必行!


  三、分库分表 + 读写分离


  首先就是老一套,分库分表 + 读写分离,这个基本是基于MySQL的架构中,必经之路了,毕竟实施起来难度不是特别的高,而且速度较快,效果比较显著。

  说白了,就是分库后,每台主库可以承载部分写入压力,单库的写并发会降低;其次就是单个主库的磁盘空间可以降低负载的数据量,不至于很快就满了;


  而分表之后,单个数据表的数据量可以降低到百万级别,这个是支撑海量数据以及保证高性能的最佳实践,基本两三百万的单表数据量级还是合理的。


  然后读写分离之后,就可以将单库的读写负载压力分离到主库和从库多台机器上去,主库就承载写负载,从库就承载读负载,这样避免单库所在机器的读写负载过高,导致CPU负载、IO负载、网络负载过



高,最后搞得数据库机器宕机。

  首先这么重构一下数据库层面的架构之后,效果就好的多了。因为单表数据量降低了,那么用户查询的性能得到很大的提升,基本可以达到1秒以内的效果。




四、每秒10万查询的高并发挑战

  上面那套初步的分库分表+读写分离的架构确实支撑了一段时间,但是慢慢的那套架构又暴露出来了弊端出来了,因为商家用户都是开了数据分析页面之后,页面上有js脚本会每隔几秒钟就发送一次请求


到后端来加载最新的数据分析结果。

  此时就有一个问题了,渐渐的查询MySQL的压力越来越大,基本上可预见的范围是朝着每秒10级别去走。


  但是我们分析了一下,其实99%的查询,都是页面JS脚本自动发出刷新当日数据的查询。只有1%的查询是针对昨天以前的历史数据,用户手动指定查询范围后来查询的。


  但是现在的这个架构之下,我们是把当日实时数据计算结果(代表了热数据)和历史离线计算结果(代表了冷数据)都放在一起的,所以大家可以想象一下,热数据和冷数据放在一起,然后对热数据的高



并发查询占到了99%,那这样的架构还合理吗?

  当然不合理,我们需要再次重构系统架构。


  五、 数据的冷热分离架构


  针对上述提到的问题,很明显要做的一个架构重构就是冷热数据分离。也就是说,将今日实时计算出来的热数据放在一个MySQL集群里,将离线计算出来的冷数据放在另外一个MySQL集群里。

  然后开发一个数据查询平台,封装底层的多个MySQL集群,根据查询条件动态路由到热数据存储或者是冷数据存储。


  通过这个步骤的重构,我们就可以有效的将热数据存储中单表的数据量降低到更少更少,有的单表数据量可能就几十万,因为将离线计算的大量数据结果从表里剥离出去了,放到另外一个集群里去。此时



大家可想而知,效果当然是更好了。

  因为热数据的单表数据量减少了很多,当时的一个最明显的效果,就是用户99%的查询都是针对热数据存储发起的,性能从原来的1秒左右降低到了200毫秒以内,用户体验提升,大家感觉更好了。





六、自研Elasticsearch+HBase+纯内存的查询引擎

  架构演进到这里,看起来好像还不错,但是其实问题还是很多。因为到了这个阶段,系统遇到了另外一个较为严重的问题:冷数据存储,如果完全用MySQL来承载是很不靠谱的。冷数据的数据量是日增


长不断增加,而且增速很快,每天都新增几千万。

  因此你的MySQL服务器将会面临不断的需要扩容的问题,而且如果为了支撑这1%的冷数据查询请求,不断的扩容增加高配置的MySQL服务器,大家觉得靠谱么?


  肯定是不合适的!


  要知道,大量分库分表后,MySQL大量的库和表维护起来是相当麻烦的,修改个字段?加个索引?这都是一场麻烦事儿。


  此外,因为对冷数据的查询,一般都是针对大量数据的查询,比如用户会选择过去几个月,甚至一年的数据进行分析查询,此时如果纯用MySQL还是挺灾难性的。


  因为当时明显发现,针对海量数据场景下,一下子查询分析几个月或者几年的数据,性能是极差的,还是很容易搞成几秒甚至几十秒才出结果。


  因此针对这个冷数据的存储和查询的问题,我们最终选择了自研一套基于NoSQL来存储,然后基于NoSQL+内存的SQL计算引擎。


  具体来说,我们会将冷数据全部采用ES+HBase来进行存储,ES中主要存放要对冷数据进行筛选的各种条件索引,比如日期以及各种维度的数据,然后HBase中会存放全量的数据字段。


  因为ES和HBase的原生SQL支持都不太好,因此我们直接自研了另外一套SQL引擎,专门支持这种特定的场景,就是基本没有多表关联,就是对单个数据集进行查询和分析,然后支持NoSQL存储+内存计



算。

  这里有一个先决条件,就是如果要做到对冷数据全部是单表类的数据集查询,必须要在冷数据进入NoSQL存储的时候,全部基于ES和HBase的特性做到多表入库关联,进数据存储就全部做成大宽表的状



态,将数据关联全部上推到入库时完成,而不是在查询时进行。

  对冷数据的查询,我们自研的SQL引擎首先会根据各种where条件先走ES的分布式高性能索引查询,ES可以针对海量数据高性能的检索出来需要的那部分数据,这个过程用ES做是最合适的。


  接着就是将检索出来的数据对应的完整的各个数据字段,从HBase里提取出来,拼接成完成的数据。


  然后就是将这份数据集放在内存里,进行复杂的函数计算、分组聚合以及排序等操作。


  上述操作,全部基于自研的针对这个场景的查询引擎完成,底层基于Elasticsearch、HBase、纯内存来实现。




七、实时数据存储引入缓存集群

  好了,到此为止,冷数据的海量数据存储、高性能查询的问题,就解决了。接着回过头来看看当日实时数据的查询,其实实时数据的每日计算结果不会太多,而且写入并发不会特别特别的高,每秒上万也


就差不多了。

  因此这个背景下,就是用MySQL分库分表来支撑数据的写入、存储和查询,都没问题。


  但是有一个小问题,就是说每个商家的实时数据其实不是频繁的变更的,在一段时间内,可能压根儿没变化,因此不需要高并发请求,每秒10万级别的全部落地到数据库层面吧?要全都落地到数据库层



面,那可能要给每个主库挂载很多从库来支撑高并发读。

  因此这里我们引入了一个缓存集群,实时数据每次更新后写入的时候,都是写数据库集群同时还写缓存集群的,是双写的方式。


  然后查询的时候是优先从缓存集群来走,此时基本上90%以上的高并发查询都走缓存集群了,然后只有10%的查询会落地到数据库集群。




八、阶段性总结

  好了,到此为止,这个架构基本左边也都重构完毕:

  ·热数据基于缓存集群+数据库集群来承载高并发的每秒十万级别的查询。


  · 冷数据基于ES+HBase+内存计算的自研查询引擎来支撑海量数据存储以及高性能查询。


  经实践,整个效果非常的好。用户对热数据的查询基本多是几十毫秒的响应速度,对冷数据的查询基本都是200毫秒以内的响应速度。


  九、下一阶段的展望


  其实架构演进到这里已经很不容易了,因为看似这么一张图,里面涉及到无数的细节和技术方案的落地,需要一个团队耗费至少1年的时间才能做到这个程度。

  但是接下来,我们要面对的,就是高可用的问题,因为付费级的产品,我们必须要保证超高的可用性,99.99%的可用性,甚至是99.999%的可用性。










本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?(注-册)加入51Testing

x
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏
回复

使用道具 举报

本版积分规则

关闭

站长推荐上一条 /1 下一条

小黑屋|手机版|Archiver|51Testing软件测试网 ( 沪ICP备05003035号 关于我们

GMT+8, 2024-11-9 10:45 , Processed in 0.063776 second(s), 24 queries .

Powered by Discuz! X3.2

© 2001-2024 Comsenz Inc.

快速回复 返回顶部 返回列表