51Testing软件测试论坛

 找回密码
 (注-册)加入51Testing

QQ登录

只需一步,快速开始

微信登录,快人一步

手机号码,快捷登录

查看: 2311|回复: 1
打印 上一主题 下一主题

[python] 装饰器

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2017-7-5 16:09:34 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
>>> def now():...     print('2015-3-25')...>>> f = now>>> f()2015-3-25
函数对象有一个__name__属性,可以拿到函数的名字:
>>> now.__name__'now'>>> f.__name__'now'
现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func):    def wrapper(*args, **kw):        print('call %s():' % func.__name__)        return func(*args, **kw)    return wrapper
观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
@logdef now():    print('2015-3-25')
调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:
>>> now()call now():2015-3-25
把@log放到now()函数的定义处,相当于执行了语句:
now = log(now)
由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):    def decorator(func):        def wrapper(*args, **kw):            print('%s %s():' % (text, func.__name__))            return func(*args, **kw)        return wrapper    return decorator
这个3层嵌套的decorator用法如下:
@log('execute')def now():    print('2015-3-25')
执行结果如下:
>>> now()execute now():2015-3-25
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
>>> now = log('execute')(now)
我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。
以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的'now'变成了'wrapper':
>>> now.__name__'wrapper'
因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:
import functoolsdef log(func):    @functools.wraps(func)    def wrapper(*args, **kw):        print('call %s():' % func.__name__)        return func(*args, **kw)    return wrapper
或者针对带参数的decorator:
import functoolsdef log(text):    def decorator(func):        @functools.wraps(func)        def wrapper(*args, **kw):            print('%s %s():' % (text, func.__name__))            return func(*args, **kw)        return wrapper    return decorator
import functools是导入functools模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。
小结
在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。
decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。
请编写一个decorator,能在函数调用的前后打印出'begin call'和'end call'的日志。
再思考一下能否写出一个@log的decorator,使它既支持:
@logdef f():    pass
又支持:
@log('execute')def f():    pass
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏
回复

使用道具 举报

  • TA的每日心情
    无聊
    2024-9-19 09:07
  • 签到天数: 11 天

    连续签到: 2 天

    [LV.3]测试连长

    2#
    发表于 2017-7-5 17:07:53 | 只看该作者
    感觉有些难,看不太明白
    回复 支持 反对

    使用道具 举报

    本版积分规则

    关闭

    站长推荐上一条 /1 下一条

    小黑屋|手机版|Archiver|51Testing软件测试网 ( 沪ICP备05003035号 关于我们

    GMT+8, 2024-11-16 22:41 , Processed in 0.068680 second(s), 22 queries .

    Powered by Discuz! X3.2

    © 2001-2024 Comsenz Inc.

    快速回复 返回顶部 返回列表