51Testing软件测试论坛

标题: Node.js 应用全链路追踪技术之全链路信息存储 [打印本页]

作者: lsekfe    时间: 2023-2-3 11:39
标题: Node.js 应用全链路追踪技术之全链路信息存储
 一、背景
  目前业界主流的做法是使用分布式链路跟踪系统,其理论基础是来自 Google 的一篇论文 《大规模分布式系统的跟踪系统》。
  论文如下图所示:

(图片来源:网络)

  在此理论基础上,诞生了很多优秀的实现,如 zipkin、jaeger 。同时为了保证 API 兼容,他们都遵循 OpenTracing 标准。那 OpenTracing 标准是什么呢?
  OpenTracing 翻译为开发分布式追踪,是一个轻量级的标准化层,它位于应用程序/类库和链路跟踪系统之间的一层。 这一层可以用下图表示:

  从上图可以知道, OpenTracing 具有以下优势:
  ·统一了 API ,使开发人员能够方便的添加追踪系统的实现。
  · OpenTracing 已进入 CNCF ,正在为全球的分布式链路跟踪系统,提供统一的模型和数据标准。
  大白话解释下:它就像手机的接口标准,当今手机基本都是 typeC 接口,这样方便各种手机能力的共用。因此,做全链路信息存储,需要按照业界公认的 OpenTracing 标准去实现。
  本篇文章将通过已有的优秀实现 —— zipkin ,来给大家阐述 Node.js 应用如何对接分布式链路跟踪系统。
  二、zipkin
  2.1 zipkin 是什么?
  zipkin 是 Twitter 基于 Google 的分布式追踪系统论文的开发实现,其遵循 OpenTracing 标准。
  zipkin 用于跟踪分布式服务之间的应用数据链路。
  2.2 zipkin 架构
  官方文档上的架构如下图所示:

  为了更好的理解,我这边对架构图进行了简化,简化架构图如下所示:

  从上图可以看到,分为三个部分:
  第一部分:全链路信息获取,我们不使用 zipkin 自带的全链路信息获取,我们使用 zone-context 去获取全链路信息。
  第二部分:传输层, 使用 zipkin 提供的传输 api ,将全链路信息传递给 zipkin。
  第三部分: zipkin 核心功能,各个模块介绍如下:
  collector 就是信息收集器,作为一个守护进程,它会时刻等待客户端传递过来的追踪数据,对这些数据进行验证、存储以及创建查询需要的索引。
  storage 是存储组件。zipkin 默认直接将数据存在内存中,此外支持使用 ElasticSearch 和 MySQL
  search 是一个查询进程,它提供了简单的 JSON API 来供外部调用查询。
  web UI 是 zipkin 的服务端展示平台,主要调用 search 提供的接口,用图表将链路信息清晰地展示给开发人员。
  至此, zipkin 的整体架构就介绍完了,下面我们来进行 zipkin 的环境搭建。
  2.3 zipkin 环境搭建
  采用 docker 搭建, 这里我们使用 docker 中的 docker-compose 来快速搭建 zipkin 环境。
  docker-compose.yml 文件内容如下:
  1.  version: '3.8'
  2.   services:
  3.     elasticsearch:
  4.       image: docker.elastic.co/elasticsearch/elasticsearch:7.5.0
  5.       container_name: elasticsearch
  6.       restart: always
  7.       ports:
  8.         - 9200:9200
  9.       healthcheck:
  10.         test: ["CMD-SHELL", "curl --silent --fail localhost:9200/_cluster/health || exit 1"]
  11.         interval: 30s
  12.         timeout: 10s
  13.         retries: 3
  14.         start_period: 40s
  15.       environment:
  16.         - discovery.type=single-node
  17.         - bootstrap.memory_lock=true
  18.         - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
  19.         - TZ=Asia/Shanghai
  20.       ulimits:
  21.         memlock:
  22.           soft: -1
  23.           hard: -1
  24.     zipkin:
  25.       image: openzipkin/zipkin:2.21
  26.       container_name: zipkin
  27.       depends_on:
  28.         - elasticsearch
  29.       links:
  30.         - elasticsearch
  31.       restart: always
  32.       ports:
  33.         - 9411:9411
  34.       environment:
  35.         - TZ=Asia/Shanghai
  36.         - STORAGE_TYPE=elasticsearch
  37.         - ES_HOSTS=elasticsearch:9200
复制代码

在上面文件所在的目录下执行 docker-compose up -d 即可完成本地搭建。
  搭建完成后,在浏览器中打开地址 http://localhost:9411 ,会看到如下图所示页面:

  接着打开地址 http://localhost:9200 ,会看到如下图所示页面:

  至此, zipkin 的本地环境就搭建好啦。 下面我就将介绍 Node.js 应用如何对接 zipkin。
  三、Node.js 接入 zipkin
  3.1 搞定传输层
  因为 zipkin 是基于 OpenTracing 标准实现的。因此我们只要搞定了 zipkin 的传输层,也就搞定了其他主流分布式追踪系统。
  这里我们用到了 zipkin 官方提供的两个 npm 包,分别是:
  ·zipkin
  · zipkin-transport-http
  zipkin 包是官方对支持 Node.js 的核心包。 zipkin-transport-http 包的作用是将数据通过 HTTP 异步发送到 zipkin 。
  下面我们将详细介绍在传输层,如何将将数据发送到 zipkin 。
  3.2 传输层基础封装
  核心代码实现和相关注释如下:

  1. const {
  2.     BatchRecorder,
  3.     Tracer,
  4.     // ExplicitContext,
  5.     jsonEncoder: { JSON_V1, JSON_V2 },
  6.   } = require('zipkin')
  7.   const { HttpLogger } = require('zipkin-transport-http')
  8.   
  9.   // const ctxImpl = new ExplicitContext();
  10.   
  11.   // 配置对象
  12.   const options = {
  13.     serviceName: 'zipkin-node-service',
  14.     targetServer: '127.0.0.1:9411',
  15.     targetApi: '/api/v2/spans',
  16.     jsonEncoder: 'v2'
  17.   }
  18.   
  19.   // http 方式传输
  20.   async function recorder ({ targetServer, targetApi, jsonEncoder }) => new BatchRecorder({
  21.     logger: new HttpLogger({
  22.       endpoint: `${targetServer}${targetApi}`,
  23.       jsonEncoder: (jsonEncoder === 'v2' || jsonEncoder === 'V2') ? JSON_V2 : JSON_V1,
  24.     })
  25.   })
  26.   
  27.   // 基础记录
  28.   const baseRecorder = await recorder({
  29.     targetServer: options.targetServer
  30.     targetApi: options.targetApi
  31.     jsonEncoder: options.jsonEncoder
  32.   })
复制代码


至此,传输层的基础封装就完成了,我们抽离了 baseRecorder 出来,下面将会把全链路信息接入到传输层中。
  3.3 接入全链路信息
  这里说下官方提供的接入 SDK ,代码如下:
  1.  const { Tracer } = require('zipkin')
  2.   const ctxImpl = new ExplicitContext()
  3.   const tracer = new Tracer({ ctxImpl, recorder: baseRecorder })
  4.   // 还要处理请求头、手动层层传递等事情
复制代码


上面的方式缺点比较明显,需要额外去传递一些东西,这里我们使用上篇文章提到的 Zone-Context , 代码如下:
  1. const zoneContextImpl = new ZoneContext()
  2.   const tracer = new Tracer({ zoneContextImpl, recorder: baseRecorder })
  3.   // 仅此而已,不再做额外处理
复制代码
对比两者,明显发现, Zone-Context 的实现方式更加的隐式,对代码入侵更小。这也是单独花一篇文章介绍 Zone-Context 技术原理的价值体现。
  自此,我们完成了传输层的适配, Node.js 应用接入 zipkin 的核心步骤基本完成。
  3.4 搞定 zipkin 收集、存储、展示
  这部分中的收集、展示功能, zipkin 官方自带完整实现,无需进行二次开发。存储这块,提供了 MySQL 、 Elasticsearch 等接入方式。可以根据实际情况去做相应的接入。本文采用 docker-compose 集成了 ElasticSearch 。
  四、总结
  自此,我们已经完成基于业界通用 OpenTracing 标准实现的 zipkin 的 Node.js 方案。希望大家看完这两篇文章,对 Node.js 全链路追踪,有一个整体而清晰的认识。








欢迎光临 51Testing软件测试论坛 (http://bbs.51testing.com/) Powered by Discuz! X3.2